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Abstract A quantitative real-time PCR (QPCR) assay
with the TagMan system was used to quantify 16S rRNA
genes of f-proteobacterial ammonia-oxidizing bacteria
(AOB) in a batch nitrification bioreactor. Five different sets
of primers, together with a TagMan probe, were used to
quantify the 16S rRNA genes of f-proteobacterial AOB
belonging to the Nitrosomonas europaea, Nitrosococcus
mobilis, Nitrosomonas nitrosa, and Nitrosomonas cryotol-
erans clusters, and the genus Nitrosospira. We also used
PCR followed by denaturing gradient gel electrophoresis
(DGGE), cloning, and sequencing of their 16S rRNA genes
to identify the AOB species. Seed sludge from an industrial
wastewater treatment process controlling high-strength
nitrogen wastewater (500 mg/L NH,*-N) was used as the
inoculum for subsequent batch experiment. The Nitroso-
monas nitrosa cluster was the predominant AOB
(2.3 x 10° copies/mL) in the start-up period of the batch
experiment. However, from the exponential growth period,
the Nitrosomonas europaea cluster was the most abundant
AOB, and its 16S rRNA gene copy number increased to
8.9 x 10° copies/mL. The competitive dominance between
the two AOB clusters is consistent with observed differ-
ences in ammonia tolerance and substrate affinity. Analysis
of the DGGE results indicated the presence of Nitroso-
monas europaea ATCC19718 and Nitrosomonas nitrosa
Nm90, consistent with the QPCR results.
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Introduction

Biological nitrification, the conversion of ammonia to
nitrate via nitrite, is primarily performed by a unique group
of autotrophic microorganisms, the nitrifying bacteria. In
nitrification processes, ammonia-oxidizing bacteria (AOB)
play a key role in oxidizing ammonia by participating in the
first step of nitrification. Because AOB are responsible for
the rate-limiting step in most nitrification processes, consid-
erable attention has been given to investigating their ecol-
ogy and physiology [3, 13].

Based on the phylogenetically conserved 16S rRNA
gene sequences, all known aerobic AOB isolates are
restricted to two evolutionarily distinct lineages of the class
Proteobacteria. With the exception of two marine species,
Nitrosococcus oceani and Nitrosococcus halophilus, within
the y-subclass of the Proteobacteria, all members of the
genera Nitrosomonas (including Nitrosococcus mobilis),
Nitrosospira, Nitrosolobus, and Nitrosovibrio represent
closely related organisms of the f-subclass of the Proteo-
bacteria. On the basis of 16S rRNA sequence homology, it
has been proposed that the latter three genera should be
combined into one genus, Nitrosospira [3,7, 12, 21].

Although the basic metabolism is uniform within the
defined groups of AOB, which use ammonia as the sole
energy source, ecophysiological differences exist between
the distinct representatives [11]. In particular, a number of
phylogenetically definable subgroups exist within the genus
Nitrosomonas [2, 14, 19, 21, 26], each with different
ecophysiological characteristics [11]. Members of the
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Nitrosomonas europaea lineage exhibit high half-saturation
constant of ammonia oxidation (between 30 and 61 pM)
and are insensitive to extremely high ammonia concentra-
tions of up to 600 mM. In contrast, members of the Nitroso-
monas nitrosa lineage have low maximum tolerance for
ammonium salts, at about 100 mM, and relatively low half-
saturation constant, ranging between 14 and 46 uM [19,
25]. Despite their distinct physiological characteristics,
evaluating the activities of AOB is largely process-oriented
in almost all engineered nitrification systems. However, an
understanding of AOB community structures and the accu-
rate quantification of each population in an engineered
nitrification system would greatly assist the prediction and
effective control of the process operations [4, 22].

Quantitative real-time PCR (QPCR) is widely used for
microbial quantification in a variety of environmental
research areas [8, 9, 17, 29]. Using a QPCR assay, a wide
dynamic quantification range of 7-8 logarithmic decades
and highly reliable quantification can be achieved. This
assay is also faster and easier than hybridization techniques.
The QPCR assay with the TagMan probe system is highly
specific because three oligonucleotide sequences are used
(i.e., forward and reverse primers, and a TagMan probe)
that are complementary to the target sequence. In subse-
quent discussions, the ‘primer and probe set’ denotes the
three oligonucleotides comprising the forward and reverse
primers and a dually labeled fluorescent TagMan probe.

Group-specific primer and probe sets targeting 16S
rRNA genes of ff-proteobacterial AOB were recently devel-
oped to facilitate their sensitive detection and quantifica-
tion, and the specificities of the sets were verified both in
silico and in vitro [16]. However, to ensure the reliability of
these group-specific sets in a natural environment, it is
essential that the microbial concentrations estimated with
QPCR and these sets should agree well with the operating
conditions and the performance of the nitrification process.

Therefore, this study focused on the application of group-
specific primer and probe sets targeting the 16S rRNA gene
sequences of f-proteobacterial AOB, which are likely to be
found in most engineered nitrification processes [20, 23]. Five
separate primer and probe sets were used in the QPCR assay
to quantify the 16S rRNA genes of f-proteobacterial AOB
belonging to the Nitrosomonas europaea, Nitrosococcus
mobilis, Nitrosomonas nitrosa, and Nitrosomonas cryotoler-
ans clusters, and the genus Nitrosospira, denoted NSMeur,
NSMmob, NSMnit, NSMcry, and NSS, respectively. Qualita-
tive and quantitative determinations of the diversity and popu-
lation dynamics of AOB in a batch nitrification process
treating high-strength nitrogen wastewater were investigated
using group-specific QPCR assays. We also used PCR fol-
lowed by denaturing gradient gel electrophoresis (DGGE),
cloning, and sequencing of the 16S rRNA genes to confirm
the specificity of the group-specific quantification method.
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Materials and methods
Operation of the nitrification bioreactor

Aerobic return sludge from a domestic wastewater treat-
ment plant located in Pohang, Korea, was cultivated in a
completely stirred tank reactor (CSTR) with a working vol-
ume of 7 L to produce a constant source of inoculum for the
biological nitrification reaction. Medium for the inoculum
feed, made by the dilution of an industrial nitrogen waste-
water, contained 504 mg/L NH,*-N, 496 mg/L. SCN~, and
other inorganic compounds that are necessary for the
growth of nitrifying bacteria. The inoculum system was
maintained at pH 8.0 and 30 °C, with a hydraulic retention
time (HRT) of 10 days. The steady-state effluent from this
system was used to provide seed cultures for the subsequent
batch experiment.

Another CSTR with a working volume of 6.5L,
equipped with temperature, pH, and dissolved oxygen (DO)
controllers, was used in the batch mode to monitor the pop-
ulation dynamics of AOB. The composition of the medium
used in the batch experiment was as follows: 2,360 mg/L
(NH,),SO,, 129 mg/L. KH,PO,, 5mg/L CaCl,-2H,0,
385 mg/L K,HPO,, 50 mg/LL. MgSO,-7H,0, 500 mg/L
NaHCO;, 5 mg/L FeSO,-7H,0, 7 mg/L KCl, and 5 mg/L
MnSO,-H,0. Steady-state effluent from the inoculum sys-
tem was seeded at an initial volatile suspended solid (VSS)
concentration of 13 mg/L. Pure air was supplied to main-
tain a DO concentration of up to 4 mg/L. The reactor was
operated at pH 8.0 and 30 °C.

Ammonia, nitrite, and nitrate ion concentrations were
measured in duplicate with ion chromatography (790 Per-
sonal IC, Metrohm, Switzerland). The VSS and thiocyanate
concentrations were measured with the procedure described
in standard methods [1]. Total genomic DNA was extracted
in duplicate from 1.5 mL of mixed liquor suspended solid
samples using an automated nucleic acid extractor with a
commercial DNA purification kit (Magtration System 6GC,
Precision System Science, Chiba, Japan), as described pre-
viously [28].

Microbial quantification using QPCR assays

Five previously reported group-specific primer and probe
sets [16] were used to separately detect four subgroups of
Nitrosomonas (the Nitrosomonas europaea, Nitrosococcus
mobilis, Nitrosomonas nitrosa, and Nitrosomonas cryotoler-
ans clusters) and the genus Nitrosospira (Table 1). The term
‘-set’” was suffixed to the microbial group abbreviations
described earlier to denote the corresponding primer and
probe sets used to detect the target microbial groups. The
primer and probe set used to detect the Nitrosomonas euro-
paea cluster (NSMeur), for example, was the NSMeur-set.
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Table 1 Primer and probe sets used in this study

Name Function Target group Sequence (5" — 3) E. coli numbering
NSMeur-828F F primer Nitrosomonas europaea cluster GTTGT CGGAT CTAAT TAAG 828-846
NSMeur-984T Probe CCTAC CCTTG ACATG CTTGG AATC 984-1007
NSMeur-1028R R primer TGTCT TGGCT CCCTT TC 1028-1044
NSMmob-988F F primer Nitrosococcus mobilis cluster GCTTG GAATT TTACG GAGAC 988-1017
NSMmob-1243T Probe AGTGT ACAGA GGGTA GCCAA CCC 1243-1265
NSMmob-1282R R primer CTACG AAGTG CTTTG TGAG 1282-1300
NSMnit-438F F primer Nitrosomonas nitrosa cluster TTCGG TCGGG AAGAW ATAG 438-456
NSMnit-483T Probe CGGTA CCGAC ATAAG AAGCA CCGG 483-506
NSMnit-633R R primer CTAGT YATAT AGTTT CAAAC GC 633-654
NSMcry-211F F primer Nitrosomonas cryotolerans cluster AGACC TTRTG CTTTT GGAG 211-229
NSMecry-270T Probe CCAAC TACTG ATCGT YGCCT TGGT 270-293
NSMcry-434R R primer TTTTC TTCTC RACTG AAAGA G 434-454
NSS-209F F primer Nitrosospira genus CAAGA CCTTG CGCTY TT 209-225
NSS-432T Probe TTTCG TTCCG GCTGA AAGAG CT 432-453
NSS-478R R primer TCTTC CGGTA CCGTC AKT 478-495

All QPCR assays were performed using a LightCycler
1.2 (Roche Diagnostics, Mannheim, Germany) in 20 uL
reaction capillary tubes. Each capillary tube was separately
loaded with 2 pL of template DNA, followed by 1 pL (final
concentration, 500 nM) of the forward and reverse primers,
together with 1 puL (final concentration, 100 nM) of the
TagMan probe corresponding to each primer and probe set,
4 pL of the LightCycler TagMan Master mix (Roche Diag-
nostics), and PCR-grade sterile water to a final volume of
20 pL. All experiments were performed in duplicate.

A two-step amplification of the target DNA, combining
the annealing and extension steps, was performed under the
following conditions: an initial 10 min incubation at 94 °C
for Tag DNA polymerase activation; 45 cycles of denatur-
ation at 94 °C for 10 s, and simultaneous annealing and
extension at 60 °C for 30 s. The fluorescence response data
were obtained during the annealing and extension period
and the threshold cycle (C;) was generated with an auto-
mated method of absolute quantification analysis using
LightCycler Software (version 4.0). Previously reported
values for the slope and intercept of each primer and probe
set [16] were used to quantify the copy numbers of the 16S
rRNA genes of the target AOB clusters in the samples.

PCR-DGGE analysis

Three DNA samples extracted from the inoculum system
were used as the templates for PCR. Bacterial 16S rRNA
gene fragments were amplified with forward primer 338f
(5'-ACTCCTACGGGAGGCAG-3'; with a GC clamp at
the 5’ terminus) and reverse primer 805r (5'-GAC-
TACCAGGGTATCTAATCC-3'). Partial 16S rRNA gene
amplifications were performed in 50 pL reaction mixtures

using a thermal cycler (PTC-100, MJ Research, Watertown,
MA, USA). PCR conditions were 94 °C for 10 min; 20
cycles consisting of 94 °C for 30 s, 65 °Cto 55 °Cin 0.5 °C
decrements/cycle for 30 s, and 72 °C for 45 s; 20 cycles of
94 °C for 30s, 55 °C for 30s, and 72 °C for 45 s; and a
final extension at 72 °C for 7 min.

DGGE was performed on 8% polyacrylamide gel with a
25-55% denaturant gradient (100% denaturant corre-
sponded to 7 M urea and 40% formamide). Electrophoresis
was run at 80 V for 13 h in 1x TAE buffer at a constant
temperature of 60 °C, using the DCode Universal Mutation
Detection System (Bio-Rad, Hercules, CA, USA). The
PCR products separated on the gel were stained with ethi-
dium bromide for 25 min and destained for 20 min before
UV transillumination. The major DGGE bands were cut
from the gel and subcloned with the pGEM-T Easy Vector
System (Promega, Madison, WI, USA). The plasmids were
extracted from transformed and cultured cells using a plas-
mid DNA purification kit (Plasmid Quick, General Biosys-
tem, Seoul, Korea), and the cloned 16S rRNA genes were
sequenced by a commercial sequencing service (Macrogen,
Seoul, Korea). The clone sequences were compared with
those deposited in the GenBank database, using the
BLASTn program.

Results and discussion
Performance of nitrification inoculum system
Table 2 summarizes the performance and nitrogen balance

of the inoculum system at steady-state operation. Steady-
state was assumed when the effluent NH,* and NO,~
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Table 2 Chemical performance and nitrogen balance at steady-state
operation of the inoculum system

Composition Concentration (mg/L)
Influent

NH,*-N 504.0 £ 14
SCN™-N 119.7 £ 0.7
Effluent

NH,*-N 0+0
NO,-N 26.5+2.7
NO; -N 590.1 £17.6
SCN™-N 0.7+ 04
Nitrogen balance

Reduced NH,*-N 504.0
Reduced SCN™-N 119.0
Produced NO, -N 616.5
Recovery (%) 99.0%

concentrations did not vary by more than 10%. The steady-
state data were obtained from eight consecutive samples
collected during a period of 50 days of steady-state opera-
tion. At 10 days HRT, the ammonia nitrogen (504 mg/L)
and thiocyanate (496 mg/L) contained in the influent indus-
trial wastewater were almost completely oxidized, with
removal efficiencies of 100 and 99.4%, respectively. Thio-
cyanate oxidation results in the accumulation of ammonia,
thus contributing to the elevation of ammonia in the sys-
tem. Therefore, the 119.7 mg of nitrogen included in the
496 mg of thiocyanate per liter of influent was considered
in the nitrogen balance of the system. The overall mass-bal-
ance recovery in the conversion of nitrogen at steady-state
was 99.0% (Table 2).

Three consecutive samples were analyzed at steady-state
using DGGE to monitor and identify the bacteria in the
inoculum system. DGGE analysis of the PCR products
amplified using the bacterial universal primer pair (i.e.,
338f and 805r) showed the presence of four bands (Fig. 1).
Sequences derived from bands A, B, C, and D were similar
to the 16S rRNA gene sequences of Nitrosomonas nitrosa
Nm90 (AJ298740; 99%), uncultured bacterium clone
GZKB17 (AJ853512; 99%), Thiobacillus denitrificans
NCIMB9548 (AJ243144; 98%), and uncultured bacterium
Blfcii9 (AJ318122; 95%), respectively. The band migration
patterns were identical for all samples analyzed. This result
indicates that the bacterial community structure was stable
and that N. nitrosa Nm90 was the predominant AOB in the
inoculum system. The first isolates of N. nitrosa originated
from industrial sewage disposal plants, as reported in previ-
ous studies [10, 25], and this organism has also been found
in other industrial wastewater treatment plants [15, 22].
Therefore, the occurrence of N. nitrosa Nm90 in the inocu-
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Fig. 1 DGGE image of inoculum samples amplified with the 338f and
805r primers. Three consecutive samples were analyzed and the ex-
cised bands are indicated by arrows. Numbers shown at the top of each
lane represent the time of sample collection (days)

lum system fed with high-strength industrial wastewater is
consistent with previous studies.

Performance of batch experiment

Figure 2 shows how the residual concentrations of ammo-
nia, nitrite, and nitrate, as the nitrogen balance in the batch
reactor changed over time. It is clear that ammonia oxida-
tion was followed by nitrite oxidation. The initial concen-
tration of ammonia nitrogen, 488.5 mg/L NH4+—N , was
completely oxidized to nitrite (489.6 mg/L NO, -N) dur-
ing 11.1 days of incubation. The concentration of the
ammonia nitrogen decreased linearly from 398.1 to
25.9 mg/L nitrogen in the period between 7.3 and 10.6 days
of incubation at a rate of 112.8 mg/L nitrogen per day. The
nitrite concentration remained at steady-state for about
6 days after ammonia oxidation was complete. The accu-
mulated nitrite was completely oxidized to nitrate after
21 days of incubation. The nitrite oxidation rate was
257 mg/L NO, -N per day. This was 2.3-fold higher than
the ammonia oxidation rate. This result is consistent with
the fact that ammonia oxidation is frequently the rate-limit-
ing step in the nitrification process [5, 13, 18].

Population dynamics of AOB in the batch experiment

Figure 3 shows the changes in the 16S rRNA gene copy
numbers for the Nitrosomonas europaea and Nitrosomonas
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Fig. 2 Temporal changes in the concentrations of ammonia, nitrite,
and nitrate in the batch experiment

nitrosa clusters, quantified using QPCR assays with the
NSMeur- and NSMnit-sets, respectively, in the batch
experiment. There were no positive amplification results in
the QPCR tests for the NSMmob-, NSMcry-, and NSS-sets.
The initial 16S rRNA gene copy numbers for the N. euro-
paea and N. nitrosa clusters were 7.5 x 10° and 2.3 x 10°
copies/mL, respectively. This result is in good agreement
with the expectation that N. nitrosa-like AOB would be the
most abundant AOB in the start-up period in the batch reac-
tor because N. nitrosa Nm90 was the predominant AOB in
the seed inoculum. There is a significant possibility of false
negative detection of N. nitrosa-like AOB because of the
insufficient coverage of this microbial group by some
AOB-specific primers [11, 21]. However, in this study, the
N. nitrosa cluster was successfully quantified using QPCR
assays with the NSMnit-set throughout the period of the
batch experiment. Therefore, the NSMnit-set can be used to
selectively detect and quantify changes in the 16S rRNA
gene concentrations of the N. nitrosa cluster in environ-
ments where other AOB coexist.

A lag period of approximately 6 days was observed with
respect to the increase in the copy numbers quantified with
the NSMeur- and NSMnit-sets. After the lag period, the
16S rRNA gene concentrations quantified with the NSM-
eur- and NSMnit-sets increased and reached maxima of
8.9 x 10° and 7.4 x 10° copies/mL, respectively, after
10.6 days of incubation. The rate of increase for the N.
europaea cluster was much higher than that for the N. nit-
rosa cluster. Nitrosomonas europaea-like AOB are the
most commonly isolated and best-investigated AOB
because they outcompete other AOB in environments that
are rich in ammonia [6, 17, 24]. The N. europaea-like AOB
are known to be less sensitive to high ammonium salt con-
centrations (i.e., 600 mM) than are N. nitrosa-like AOB
(i.e., 100 mM) [19, 25]. Hence, the competitive dominance

1.2¢+7

16S rRNA gene concentrations (copies/mL)

0 5 10 15 20 25
Time (days)

Fig. 3 Temporal changes in the 16S rRNA gene copy numbers of the
Nitrosomonas europaea and Nitrosomonas nitrosa clusters in the batch
experiment

of the N. europaea cluster in the batch experiment was
probably the result of their tolerance of high concentrations
of ammonia. This result indicates that the changes in the
16S tRNA gene copy numbers quantified with the group-
specific QPCR assays reflected the physiological character-
istics of each AOB group. The competitive dominance shift
between the two AOB clusters in the batch reactor indicates
that N. nitrosa-like AOB can be regarded, in ecological
terms, as typical K-strategists compared with N. europaea-
like AOB, which display a rapid growth strategy under
feast substrate-loading conditions.

A similar tendency in the population dynamics was
observed with DGGE. DGGE analysis of the PCR products
amplified using an AOB-specific primer pair produced a
single band (data not shown). The band intensity gradually
increased during the exponential phase of ammonia oxida-
tion and decreased after ammonia oxidation was complete.
The sequence derived from the DGGE band was similar to
the 16S rRNA gene sequence of N. europaea ATCC19718,
with 98% similarity. This result implies that the QPCR
assay with the NSMeur-set successfully quantified the tar-
get AOB group.

The specific growth rates of the two clusters could be
estimated in the exponential growth period based on the
16S tRNA gene quantification together with curve fitting.
The estimated specific growth rates for the N. europaea and
N. nitrosa clusters were 0.76 and 0.34 day~', respectively.
These values are consistent with the range of growth rates
cited in the literature [5, 27], which is another indication of
the specificity and applicability of the primer and probe sets
to nitrification systems.

In conclusion, QPCR assays with the AOB group-spe-
cific primer and probe sets successfully quantified the AOB
16S rRNA gene copy numbers in a laboratory-scale nitrifi-
cation bioreactor. The N. nitrosa cluster was the predominant
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AOB group in the industrial wastewater treatment process
controlling high-strength nitrogen wastewater (500 mg/L
NH,"-N). In the batch experiment, the N. europaea and N.
nitrosa clusters were detected with the corresponding
QPCR assays and the 16S rRNA gene copy numbers of
each cluster were quantified in the ranges 7.5 x 10° to
8.9 x 10° copies/mL and 2.3 x 10° to 7.4 x 10° copies/
mL, respectively. The competitive dominance between the
two AOB clusters is consistent with the physiological prop-
erties of each AOB group reported in previous studies. The
QPCR method, together with group-specific primer and
probe sets, is a powerful approach to the study of AOB
dynamics, providing a better understanding of the microbial
communities and control strategies in the nitrification
process.
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